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We consider the mean distribution functiodgr|/), ®g(r|/), and®(r|/), giving the probability that
two sites on the incipient percolation cluster, on its backbone and on its skeleton, respectively, connected by a
shortest path of lengtr’” are separated by an Euclidean distanceFollowing a scaling argument due to
de Gennes for self-avoiding walks, we derive analytical expressions for the expapends+d,,,—d and
g?=gf= 3dmin—d, which determine the scaling behavior of the distribution functions in the beait//”
<1,i.e.,®(r|/)oc/ x9%, fDB(r|/)oc/‘~de9?, andeS(r|/)oc/‘~de9f, with 7= 1/d,,i,, whered; anddy,
are the fractal dimensions of the percolation cluster and the shortest path, respectively. The theoretical predic-
tions forg,, g7, andg$ are in very good agreement with our numerical resii4.063-651X98)50411-4

PACS numbe(s): 05.20-y, 64.60—i, 05.40+]

Percolation constitutes a useful model for a variety of In this Rapid Communication, we extend our previous
disordered systems in many fields of science displaying botktudies of the structural properties of the incipient infinite
structural disorder and self-similariiy.e., fractal behavigr  cluster[10] and its backbon€9] in two and three dimen-
within some range of length scal¢s]. In many circum- sions. We consider the structural distribution function
stances, the knowledge of the internal structure of percolacp(r|/) for the incipient infinite cluster, wher®(r|/)dr is
tion clusters is required, as for instance in the study of transthe probability that two cluster sites connected by a shortest
port processes near the perc_olation thresip_gldwhere the path of length/” are at Euclidean distance betweeandr
com_pllex ItOFZOIOSE]Jy of the available conducting paths play &, 4 from each other in space. The probability distribution
crucial rolel2—oj. . . ®(r|/) is normalized according tfr¢~1d(r|/)dr=1, and
G s e e 1oUTd 0 0bey a scaling benavior wi he varii

=r//" of the form®(r|/)=/""%(x) (see, e.g3,10,11),

length scales, i.e., its masscontained within a distance herev=1/d.... Here we draw our attention to the limit
from a given cluster site chosen as the origin, averaged ovef V= ~Mmin- , W W ou : e imi
x<1, where the scaling functiori(x) follows a simple

many origins, scales a<r%, whered;=91/48 in two di- o
mensions,d;=2.524+0.008 in three dimensions, andy ~ POWer law,f(x)o=x®, i.e.,

=4 above the critical dimension, i.e., whderd =6 [1]. A 1 (1 \%

second, useful metric is the “chemical” distancebetween D(r]/ )t =g (_?) . for r//7<1. (1
two cluster site$3], defined as the length of the shortest path /s

connecting them. It is found that the mean distancke- o , o
tween two cluster sites, averaged over many pairs of sites, S|m|lar scaling fo_rms for the substructural gldstrlbutlon
behaves as a function ef asro/Ymin whered,,,=1.130  functions as a function ok=r//", ®g(r|/)=/""fg(x)
+0.004 ind=2 [6], d;=1.374-0.004 ind=3 [7], and  for the backbone ant(r|/)=/""%f4(x) for the skeleton,
dmin=2 whend=d,, is the so-called fractal dimension of the are expected3,9]. In the casex<1, the corresponding scal-
shortest path. From the above scaling relations follow that inng functions, fg(x) and fg(x), are found to behave as
“chemical” space, the mass of the cluster scales with diS-fB(X)ocxg? andfs(x)ocxgi respectively, yielding

tance/ assx/9, whered,=d;/dyy,, with d,=2 when

d=d, [3]. EAL:

The incipient infinite cluster exhibits a variety of sub- Dg(r|/) o —=g (_?)
structures that are self-similar as wgll]. A prominent ex- 7N
ample is the backbone of the cluster, defined as the subset of
cluster sites that can carry a current when a potential differiind
ence is applied between two sitésee[8] and references
therein. Thus, the structure of the backbone alone deter-
mines the conductivity of the whole percolation network be-
tween two sites. The structural and dynamical properties of ) o
the backbone of the incipient cluster have been studied re- Numerical resultSsee Refs[9,10] and below indicate
cently[9]. A second cluster substructure, denoted as the skethat g;<gf=g? in both two and three dimensions. Fdr
eton (a subset of the backbone, also called the “elastic’=d., one expects the mean fie{MF) valuesg1=g?=gf
backbong is defined as the union of all shortest paths be-=0, since percolation clusters behave similarly to simple
tween the two cluster sites. random walks above the critical dimensidp[10].

o7 B
, forrl/7v<1. 2

, 1 r
q’s(f|/)°<7'»a;$
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/‘W':II)G. /1 807;22 plt?]t ‘_Jf _th_e p:r_o?a_tt)llltyl d;stn_but::onf 1;|unc_t|on FIG. 2. Same as in Fig. 1 for the probability distribution func-
) (r|7) vsr//* for the incipientinfinite cluster in i toflowing 4, dy(r|/) of the backbone of the incipient cluster. The straight
cases:(a) d=2, /=1000 (circle), /=1400 (diamond, and / lines have the slopeg&?z 1.34 in(a), andg®=1.08 in (b)
=1800(squarg, and(b) d=3, /=400 (circle), /=600 (diamond, ’ ’ e '
and /=800 (square. The plots are based on averages over more

than 18 cluster configurations, for clusters grown up to a maximumtion, with fga(y)=y? wheny<1. For SAW defined on the
chemical distance’,=2000 on a square latticed&2) and  lattice, de Gennes argues that the behaviof Qfy(y) for

/' max=1000 on a sc latticed=3). The straight lines represent our y<1 can be obtained by considering the probability
fits for /7 (r|/)=f(x) whenx=r//7<1, and have the slopes P, (r—1|N) thata SAW ofN>1 steps returns close to its

9,=1.041in(a), andg; =0.88 in (b). starting point(origin), which can be written as
We first study the above defined distribution functions
numerically, both in two and three dimensions. To this end, NLL(N)
we generate large percolation clusterpgton square and Poan(r— 1INy —2_Z  for N>1, 3)
simple cubic lattices, respectively, using the well-known Nsaw(N)

Leath algorithm12]. To identify the backbone and skeleton

of the cluster, we apply an improved versi®] of the well-

known burning algorithm[8]. We perform averages over

more than 10 clusters, which are grown until they reach a —_

maximum of chemical shellg’,,,=2000 ind=2 and/ NS

=1000 in d=3. The results for®d(r|/), ®g(r|/), and &
§
/W

d(r|/) are shown in Figs. 1, 2, and 3, respectively. For the
incipient infinite cluster we obtaig,=1.04+0.05 ind=2
and g;=0.88+0.05 ind=3 (see alsd10]). For the back-
bone, we findgf=1.34+0.10 ind=2 andg®=1.08+0.10
in d=3 (see alsd9]). In addition, our results suggest that
®g(r|/) andPg(r|/) coincide, within the accuracy of the
present data, and as a result, the valueg;dor the skeleton
are indistinguishable from those of the backbone, ig.,
=g?. These results are summarized in Table I.

To estimate values for the exponents g5, andg$ ana-
lytically, we follow a method similar to the one discussed by

£ @g(rle)

de Genne$§13] for determining the structure of self-avoiding 166 [ . .

walks (SAW) of N steps. The latter is described by the prob- - P 0

ability distribution function Pgan(r|N)=N""fsan(y), 10 10 10

with y=r/N”, wherePgan(r|N)dr gives the probability that r/ 0

the two end points of a SAW of fixed lenght (i.e., the first

and theN+1 monomersare at a distance betweerandr FIG. 3. Same as in Fig. 1 for the probability distribution func-

+dr. Here, v is the Flory exponenty=(d+2)/3 ford<4 tion ®4(r|/) of the skeleton of the incipient cluster. The straight
and v=wvy=3 for d=4, andfgay(y) is the scaling func- lines have the slopeg;=1.34 in(a), andg?=1.08 in(b).
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TABLE I. Summary of the values for the exponergs, g5, and g obtained from the numerical
simulations and the analytic expressions derived in the text.

d=2

d=3

d=6

Exponent Simulation Theory Simulation Theory Exact
g 1.04+0.05 1.026-0.004 0.88:0.05 0.898:0.008 0
g8 1.34+0.10 1.39@:0.012 1.08:0.10 1.122-0.012 0
gf 1.34+0.10 1.39:0.012 1.0&0.10 1.122-0.012 0

whereNg w(N) =N ~*9ZN is the number of SAW of lengtN
returning close to the origin anbgaw(N)<N?~ZN is the
total number of SAW of lengtiN. Here,z is the effective

coordination number of the lattice, ands the enhancement

exponent, withy=yye=1 for d=4.

good agreement with our numerical resuit$. Fig. 1 and
Table ). Note that Eq(7) yields by constructiory;=0 for
d=d., as required.

The above argument can be applied straightforwardly to
the backbone and the skeleton of the incipient cluster, where

As noted by de GenneEl3], the enhancement factor now analogous equations to E¢) can ‘be written for
N”"! occurs only in the denominator of the ratio Pg(r—1|/) and ®g(r—1/), with II(/) replaced by
NEAm(N)/Nsaw(N), but not in the numerator, indicating the I1g(#) andIlg(~), respectively. In the case of the back-

“difficulty” for a SAW to return near to its starting point.

bone, we argue thaklg(/)«n(s)ds/d/, with n(s)es™7,

Note that this missing enhancement factor in the numeratoandsec/ % as for the incipient cluster. Note the absence of
can be viewed as corresponding to its mean-field valuethe factors in the expression foflg(/), reflecting the fact

N*MF~1=1and one can write equivalently

N7ME—1

PSAW(r_)l|N)OCNWWv for N>1, (4)

corresponding to the behavidigaw(y)>y?9, with g=(y

that the backbone represents a subset of the incipient cluster
having a vanishing measure when: « [14]. Since the same
argument applies to the skeleton, we have thei(/)
=Ilg(/), yielding

(Ds(r—>1

=dg(r—1/), for /=1, (8

—1)/v. This observation suggested to us a procedure for ) ) o
describing the structural function of the incipient percolationin agreement with the numerical results shown in Figs. 2 and

cluster and its substructures analytically, in the ces€”
<1. We consider the incipient percolation cluster first.

Let us generalize Eq4) to percolation clusters by writing

the distribution function®(r|/), for a chemical distancg’
>1 and Euclidean distange—1, as

Mye(/
®0euﬁm7m—ﬂil

MR for />1, (5)

wherell(/) plays the role of the functioh”™* in Eq. (4),

and ITy(/) denotes its mean-field value. Here we argue
that, to a first approximatiod](/) is given by the probabil-

3. Interms oflIgz(/), ®g(r|/) in the limitr —1 is given by

g me(#)

and with[Tg(/) e/ ~8/(7- D1

1 /74 1
Op(r—1/ )= —g o g /AT D3,

77 a1

for />1. (10

ity that the two chosen sites are on a cluster of chemical siz€omparing this result with the scaling form fdrg(r|/)

/. Therefore, we relatél(/) to the probability distribution
of cluster sizesn(s), which is known to behave asn(s)

s ("D with 7=1+d/d; for d<d., and my==5/2 [1].

Hence,I1(/) is given byIl(/)xsn(s)ds/d/, and noting
that s</%, we find I1(/) /972~ for d=d,, and
Hye(/)</ 2. Thus, Eq.(5) becomes

/2 1

‘D(fﬂl|/)°<7zam°‘7ﬁa/d/“_2)_l’

for />1. (6)

Comparing this result with the one obtained from Eb.in
the limitr—1, yields—7g,=d_ (7—2)—-1, i.e.,

g;=d;+dyin—d, (7)

which predictsg;=1.026+0.004 ford=2 and g,=0.898
+0.008 ford= 3. These theoretical values fgi are in very

given in Eq.(2) in the limit r—1, yields —3gf=d, (r—1)
-3, i.e.,

g?ZSdmin_da (11)
predicting g=1.390+0.004 in d=2 and g®=1.122
+0.004 ind=3, with g7=g%, in remarkable agreement
with the numerical resultécf. Figs. 2 and 3, and Table.|
Note also that from Eq(11) and (8) one obtainsg?=g?
=0 ford=d., as expected.

In summary, we derive the analytical expressigns- d;
+dmin—d and g7=g7=3d,—d describing the scaling be-
havior of the structural distribution functionsp(r|/)

o /7 PAx91 (I)B(r|/)oc/*7’dx9?, and(I)S(r|/)oc/*~de9f, of

the incipient percolation cluster, its backbone and skeleton,
respectively, at the critical concentratignn in the limit x
=r//"<1. Here,5=1/d,,,, andd; andd,, are the fractal
dimensions of the incipient percolation cluster and the short-
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est path, respectively. Note that from the above expressionsell as without trapping15], and seems therefore to be

for the exponentg,, g?, andgf follow that the correspond-
ing distribution functions for”>1, in the limitr—1, scale
as ®(r—1)x/"@*D and dg(r—1)=bgr—1/)
«/ "3, the latter beingndependenbf the lattice dimension
d. We note that the resutb(r—1|/)o/ @+ for />1,

more general.
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