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We consider the mean distribution functionsF(r ul ), FB(r ul ), andFS(r ul ), giving the probability that
two sites on the incipient percolation cluster, on its backbone and on its skeleton, respectively, connected by a
shortest path of lengthl are separated by an Euclidean distancer . Following a scaling argument due to
de Gennes for self-avoiding walks, we derive analytical expressions for the exponentsg15df1dmin2d and
g1

B5g1
S53dmin2d, which determine the scaling behavior of the distribution functions in the limitx[r /l ñ

!1, i.e.,F(r ul )}l 2 ñdxg1, FB(r ul )}l 2 ñdxg1
B
, andFS(r ul )}l 2 ñdxg1

S
, with ñ[1/dmin , wheredf anddmin

are the fractal dimensions of the percolation cluster and the shortest path, respectively. The theoretical predic-
tions for g1 , g1

B, andg1
S are in very good agreement with our numerical results.@S1063-651X~98!50411-4#

PACS number~s!: 05.20.2y, 64.60.2i, 05.40.1j
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Percolation constitutes a useful model for a variety
disordered systems in many fields of science displaying b
structural disorder and self-similarity~i.e., fractal behavior!
within some range of length scales@1#. In many circum-
stances, the knowledge of the internal structure of perc
tion clusters is required, as for instance in the study of tra
port processes near the percolation thresholdpc , where the
complex topology of the available conducting paths pla
crucial role@2–5#.

It is known that at the percolation thresholdpc , the in-
cipient infinite cluster displays fractal behavior over
length scales, i.e., its masss contained within a distancer
from a given cluster site chosen as the origin, averaged o
many origins, scales ass}r df , wheredf591/48 in two di-
mensions,df52.52460.008 in three dimensions, anddf
54 above the critical dimension, i.e., whend>dc56 @1#. A
second, useful metric is the ‘‘chemical’’ distancel between
two cluster sites@3#, defined as the length of the shortest pa
connecting them. It is found that the mean distancer be-
tween two cluster sites, averaged over many pairs of s
behaves as a function ofl as r}l 1/dmin, wheredmin51.130
60.004 in d52 @6#, dmin51.37460.004 in d53 @7#, and
dmin52 whend>dc , is the so-called fractal dimension of th
shortest path. From the above scaling relations follow tha
‘‘chemical’’ space, the mass of the cluster scales with d
tancel as s}l dl , wheredl 5df /dmin , with dl 52 when
d>dc @3#.

The incipient infinite cluster exhibits a variety of su
structures that are self-similar as well@1#. A prominent ex-
ample is the backbone of the cluster, defined as the subs
cluster sites that can carry a current when a potential dif
ence is applied between two sites~see @8# and references
therein!. Thus, the structure of the backbone alone de
mines the conductivity of the whole percolation network b
tween two sites. The structural and dynamical properties
the backbone of the incipient cluster have been studied
cently@9#. A second cluster substructure, denoted as the s
eton ~a subset of the backbone, also called the ‘‘elast
backbone! is defined as the union of all shortest paths b
tween the two cluster sites.
PRE 581063-651X/98/58~5!/5205~4!/$15.00
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In this Rapid Communication, we extend our previo
studies of the structural properties of the incipient infin
cluster @10# and its backbone@9# in two and three dimen-
sions. We consider the structural distribution functi
F(r ul ) for the incipient infinite cluster, whereF(r ul )dr is
the probability that two cluster sites connected by a shor
path of lengthl are at Euclidean distance betweenr and r
1dr from each other in space. The probability distributio
F(r ul ) is normalized according to*r d21F(r ul )dr 51, and
is found to obey an scaling behavior with the variablex
[r /l ñ of the formF(r ul )5l 2 ñdf (x) ~see, e.g.,@3,10,11#!,
where ñ[1/dmin . Here, we draw our attention to the lim
x!1, where the scaling functionf (x) follows a simple
power law, f (x)}xg1, i.e.,

F~r ul !}
1

l ñd S r

l ñD g1

, for r /l ñ!1. ~1!

Similar scaling forms for the substructural distributio
functions as a function ofx[r /l ñ, FB(r ul )5l 2 ñdf B(x)
for the backbone andFS(r ul )5l 2 ñdf S(x) for the skeleton,
are expected@3,9#. In the casex!1, the corresponding scal
ing functions, f B(x) and f S(x), are found to behave a

f B(x)}xg1
B

and f S(x)}xg1
S
, respectively, yielding

FB~r ul !}
1

l ñd S r

l ñD g1
B

and

FS~r ul !}
1

l ñd S r

l ñD g1
S

, for r /l ñ!1. ~2!

Numerical results~see Refs.@9,10# and below! indicate
that g1,g1

B>g1
S in both two and three dimensions. Ford

>dc , one expects the mean field~MF! valuesg15g1
B5g1

S

50, since percolation clusters behave similarly to sim
random walks above the critical dimensiondc @10#.
R5205 © 1998 The American Physical Society
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We first study the above defined distribution functio
numerically, both in two and three dimensions. To this e
we generate large percolation cluster atpc on square and
simple cubic lattices, respectively, using the well-know
Leath algorithm@12#. To identify the backbone and skeleto
of the cluster, we apply an improved version@9# of the well-
known burning algorithm@8#. We perform averages ove
more than 105 clusters, which are grown until they reach
maximum of chemical shellsl max52000 ind52 andl max
51000 in d53. The results forF(r ul ), FB(r ul ), and
FS(r ul ) are shown in Figs. 1, 2, and 3, respectively. For
incipient infinite cluster we obtaing151.0460.05 in d52
and g150.8860.05 in d53 ~see also@10#!. For the back-
bone, we findg1

B51.3460.10 in d52 andg1
B51.0860.10

in d53 ~see also@9#!. In addition, our results suggest th
FB(r ul ) and FS(r ul ) coincide, within the accuracy of th
present data, and as a result, the values ofg1

S for the skeleton
are indistinguishable from those of the backbone, i.e.,g1

S

>g1
B . These results are summarized in Table I.

To estimate values for the exponentsg1 , g1
B , andg1

S ana-
lytically, we follow a method similar to the one discussed
de Gennes@13# for determining the structure of self-avoidin
walks ~SAW! of N steps. The latter is described by the pro
ability distribution function PSAW(r uN)5N2ndf SAW(y),
with y[r /Nn, wherePSAW(r uN)dr gives the probability that
the two end points of a SAW of fixed lengthN ~i.e., the first
and theN11 monomers! are at a distance betweenr and r
1dr . Here,n is the Flory exponent,n>(d12)/3 for d<4
and n5nMF5 1

2 for d>4, and f SAW(y) is the scaling func-

FIG. 1. Scaling plot of the probability distribution functio
l ñdF(r ul ) vs r /l ñ for the incipient infinite cluster in the following
cases:~a! d52, l 51000 ~circle!, l 51400 ~diamond!, and l

51800~square!, and~b! d53, l 5400 ~circle!, l 5600 ~diamond!,
and l 5800 ~square!. The plots are based on averages over m
than 105 cluster configurations, for clusters grown up to a maximu
chemical distancel max52000 on a square lattice (d52) and
l max51000 on a sc lattice (d53). The straight lines represent ou
fits for l ñdF(r ul )5 f (x) when x[r /l ñ!1, and have the slope
g151.04 in ~a!, andg150.88 in ~b!.
,

e

-

tion, with f SAW(y)}yg wheny!1. For SAW defined on the
lattice, de Gennes argues that the behavior off SAW(y) for
y!1 can be obtained by considering the probabil
PSAW(r→1uN) that a SAW ofN@1 steps returns close to it
starting point~origin!, which can be written as

PSAW~r→1uN!}
NSAW

r→1~N!

NSAW~N!
, for N@1, ~3!

e

FIG. 2. Same as in Fig. 1 for the probability distribution fun
tion FB(r ul ) of the backbone of the incipient cluster. The straig
lines have the slopesg1

B51.34 in ~a!, andg1
B51.08 in ~b!.

FIG. 3. Same as in Fig. 1 for the probability distribution fun
tion FS(r ul ) of the skeleton of the incipient cluster. The straig
lines have the slopesg1

S51.34 in ~a!, andg1
S51.08 in ~b!.
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TABLE I. Summary of the values for the exponentsg1 , g1
B , and g1

S obtained from the numerica
simulations and the analytic expressions derived in the text.

Exponent

d52 d53
d56
ExactSimulation Theory Simulation Theory

g1 1.0460.05 1.02660.004 0.8860.05 0.89860.008 0
g1

B 1.3460.10 1.39060.012 1.0860.10 1.12260.012 0
g1

S 1.3460.10 1.39060.012 1.0860.10 1.12260.012 0
t
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whereNSAW
r→1(N)}N2ndz̄N is the number of SAW of lengthN

returning close to the origin andNSAW(N)}Ng21z̄N is the
total number of SAW of lengthN. Here, z̄ is the effective
coordination number of the lattice, andg is the enhancemen
exponent, withg5gMF51 for d>4.

As noted by de Gennes@13#, the enhancement facto
Ng21 occurs only in the denominator of the rat
NSAW

r→1(N)/NSAW(N), but not in the numerator, indicating th
‘‘difficulty’’ for a SAW to return near to its starting point.
Note that this missing enhancement factor in the numer
can be viewed as corresponding to its mean-field va
NgMF21[1, and one can write equivalently

PSAW~r→1uN!}
1

Nnd

NgMF21

Ng21 , for N@1, ~4!

corresponding to the behaviorf SAW(y)}yg, with g5(g
21)/n. This observation suggested to us a procedure
describing the structural function of the incipient percolati
cluster and its substructures analytically, in the caser /l ñ

!1. We consider the incipient percolation cluster first.
Let us generalize Eq.~4! to percolation clusters by writing

the distribution functionF(r ul ), for a chemical distancel
@1 and Euclidean distancer→1, as

F~r→1ul !}
1

l ñd

PMF~ l !

P~ l !
, for l @1, ~5!

whereP~l ! plays the role of the functionNg21 in Eq. ~4!,
and PMF(l ) denotes its mean-field value. Here we arg
that, to a first approximation,P~l ! is given by the probabil-
ity that the two chosen sites are on a cluster of chemical
l . Therefore, we relateP~l ! to the probability distribution
of cluster sizessn(s), which is known to behave assn(s)
}s2(t21), with t511d/df for d<dc , and tMF55/2 @1#.
Hence,P~l ! is given by P(l )}sn(s)ds/dl , and noting
that s}l dl , we find P(l )}l 2dl (t22)21 for d<dc , and
PMF(l )}l 22. Thus, Eq.~5! becomes

F~r→1ul !}
1

l ñd

l 22

l 2dl ~t22!21 }
1

l ñd l dl ~t22!21,

for l @1. ~6!

Comparing this result with the one obtained from Eq.~1! in
the limit r→1, yields2 ñg15dl (t22)21, i.e.,

g15df1dmin2d, ~7!

which predictsg151.02660.004 for d52 and g150.898
60.008 ford53. These theoretical values forg1 are in very
or
e,

r

e

e

good agreement with our numerical results~cf. Fig. 1 and
Table I!. Note that Eq.~7! yields by constructiong150 for
d>dc , as required.

The above argument can be applied straightforwardly
the backbone and the skeleton of the incipient cluster, wh
now analogous equations to Eq.~5! can be written for
FB(r→1ul ) and FS(r→1ul ), with P~l ! replaced by
PB(l ) and PS(l ), respectively. In the case of the bac
bone, we argue thatPB(l )}n(s)ds/dl , with n(s)}s2t,
ands}l dl as for the incipient cluster. Note the absence
the factors in the expression forPB(l ), reflecting the fact
that the backbone represents a subset of the incipient clu
having a vanishing measure whens→` @14#. Since the same
argument applies to the skeleton, we have thatPS(l )
>PB(l ), yielding

FS~r→1ul !>FB~r→1ul !, for l @1, ~8!

in agreement with the numerical results shown in Figs. 2 a
3. In terms ofPB(l ), FB(r ul ) in the limit r→1 is given by

FB~r→1ul !}
1

l ñd

PB,MF~ l !

PB~ l !
, for l @1, ~9!

and withPB(l )}l 2dl (t21)21

FB~r→1ul !}
1

l ñd

l 24

l 2dl ~t21!21 }
1

l ñd l dl ~t21!23,

for l @1. ~10!

Comparing this result with the scaling form forFB(r ul )
given in Eq.~2! in the limit r→1, yields2 ñg1

B5dl (t21)
23, i.e.,

g1
B53dmin2d, ~11!

predicting g1
B51.39060.004 in d52 and g1

B51.122
60.004 in d53, with g1

S5g1
B , in remarkable agreemen

with the numerical results~cf. Figs. 2 and 3, and Table I!.
Note also that from Eqs.~11! and ~8! one obtainsg1

B5g1
S

50 for d>dc , as expected.
In summary, we derive the analytical expressionsg15df

1dmin2d and g1
B5g1

S53dmin2d describing the scaling be
havior of the structural distribution functions,F(r ul )

}l 2 ñdxg1, FB(r ul )}l 2 ñdxg1
B
, andFS(r ul )}l 2 ñdxg1

S
, of

the incipient percolation cluster, its backbone and skele
respectively, at the critical concentrationpc in the limit x
[r /l ñ!1. Here,ñ[1/dmin , anddf anddmin are the fractal
dimensions of the incipient percolation cluster and the sh
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est path, respectively. Note that from the above express
for the exponentsg1 , g1

B , andg1
S follow that the correspond

ing distribution functions forl @1, in the limit r→1, scale
as F(r→1ul )}l 2(dl 11) and FB(r→1ul )>FS(r→1ul )
}l 23, the latter beingindependentof the lattice dimension
d. We note that the resultF(r→1ul )}l 2(dl 11) for l @1,
based on numerical simulations, was also suggested for
other variants of percolation, invasion percolation with
ns

o
s

well as without trapping@15#, and seems therefore to b
more general.
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